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SUMMARY 
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in a 
rectangular duct with an external magnetic field applied transverse to the flow has been investigated. The 
walls parallel to the applied magnetic field are conducting while the other two walls which are perpendicular 
to the field are insulators. The boundary element method (BEM) with constant elements has been used to 
cast the problem into the form of an integral equation over the boundary and to obtain a system of 
algebraic equations for the boundary unknown values only. The solution of this integral equation presents 
no problem as encountered in the solution of the singular integral equations for interior methods. 
Computations have been carried out for several values of the Hartmann number (1 < M < 10). It  is found 
that as M increases, boundary layers are formed close to the insulated boundaries for both the velocity 
and the induced magnetic field and in the central part their behaviours are uniform. Selected graphs are 
given showing the behaviours of the velocity and the induced magnetic field. 

K E Y W O R D S  BEM MHDflow 

1. INTRODUCTION 

The study of flows of conducting fluids in ducts in the presence of a transverse magnetic field 
is important owing to its practical applications in magnetohydrodynamic (MHD) generators, 
pumps, accelerators and flowmeters. In general, MHD flow problems are extremely complex 
because of the coupling of the equations of fluid mechanics and electrodynamics, and analytical 
solutions are out of the question. Various forms of the problem with different combinations of 
conducting and non-conducting walls have been considered by several authors.'-5 As pointed 
out by Hunt,5 no satisfactory approximate or exact solutions exist for the most important 
practical case of a rectangular duct with conducting walls parallel to the field and non-conducting 
walls perpendicular to  the field. Grinberg6v7 has attempted an exact analysis using a Green 
function method, but his result is incomplete. Later Hunt and Stewartson' and Chiang and 
Lundgren' used boundary layer methods to cast the same problem into the form of an integral 
equation. Singh and Agarwal" followed Grinberg's solution procedure for the analytical part 
but solved the resulting singular integral equation numerically since it could not be solved easily. 
The finite element method has also been used for solving MHD channel flow problems with 
different wall conductances."*" Te~er-Sezgin'~ has solved the MHD duct flow problem with 
a wall which is partly conducting and partly insulating by reducing the problem to the solution 
of dual series equations. 

The present paper uses the boundary element method (BEM) to solve the MHD flow problem 
in a rectangular duct with perfectly conducting walls parallel to the applied magnetic field and 
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non-conducting walls perpendicular to the field. We consider the flow of an incompressible, 
viscous, electrically conducting fluid in the duct with an external magnetic field applied transverse 
to the flow. Following the procedure given by Grinberg6s7 and described in detail by Dragos,’ 
the equations are decoupled first for the applicability of the BEM. The BEM with constant 
elements has been used to cast the problem into the form of an integral equation over the 
boundary. The unknowns in the resulting discretized system of equations appear only on the 
boundary points, thus reducing the size of the system of equations. The difficulty arising from 
the unspecified values of unknown functions and their normal derivatives on the conducting 
boundary has been overcome by adding the boundary conditions to the resulting system of 
equations. Thus the BEM solution is a new application for solving the same problem that has 
been tried in the form of an integral equation in References 6, 7 and 10. Grinberg’s ~ o l u t i o n ~ - ~  
was rigorous from the mathematical point of view, but its practical usefulness was limited since 
the integral equation could not be solved easily. Our integral equation over the boundary does 
not present this problem. The singular points were treated separately. Results are obtained for 
various values of the Hartmann number up to 10 and they compare well with Singh and 
Agarwal’s ’ O results. 

2. BASIC EQUATIONS 

The equations governing the steady, laminar, fully developed flow of an incompressible, viscous, 
electrically conducting fluid in a rectangular duct subjected to a constant and uniform applied 
magnetic field are well known and are discussed by Shercliff,’ Dragos’ and others. Using a 
standard non-dimensional form, the governing equations can be written as 

( 1 )  
aB 
JY 

V 2 V + M - = - 1  inR,  

(2) 
av 
JY 

V’B + M - = 0 in a, 

where denotes the section of the duct, V ( y , z )  and B(y , z )  are the velocity and the induced 
magnetic field respectively and M is the Hartmann number. Here it is assumed that the applied 
magnetic field B ,  is parallel to the y-axis. V(y ,  z )  and (B(y,  z )  are in the x-direction, which is the 
axis of the duct, and the fluid is driven down the duct by means of a constant pressure gradient. 
The duct walls are at z = f L and y = f 1 (Figure 1). The side walls parallel to the applied 
magnetic field are perfectly conducting and the horizontal walls perpendicular to the imposed 
magnetic induction are insulators. Accordingly, the boundary conditions for equations (1) and 
(2) relating to the configuration of the problem in Figure 1 are 

V ( + l , z ) = O ,  B( 1 ,  Z) = 0, IZI < L. (4) 

Let us also assume that there is no electric current flowing in the direction of the x-axis and 
thus By = 1 and B, = 0. 
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Since both the boundary conditions and the problem equations are invariant with respect to 
the transformation z + -2, it follows that the solution is even with respect to the variable 
z, 1.e. 

and thus 

dV av as as 
- ( Y ,  4 = - - ( Y ,  -4, az az az aZ - ( Y ,  4 = - - (y ,  -z). 

Since the variables are continuous, it follows that 

so that it is sufficient to solve the problem in the semiduct 0 < z < L. 
With the change of variables 

U l = V + B ,  U Z = V - B  

it follows that 
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with the boundary conditions 

U,(  * 1 9 4  = 0, O G Z G L ,  

wheref(y) is an unknown function. The first condition in (3) for V becomes 

UAy,  L) + UAY, L) = 0. 

The problem is further simplified by the change of variables 

M U ,  = M W ,  -y, MU2 = MW2 + y, 

giving the equations 

Then by the transformation 

W, = u,e-kY, W, = uteky, 

with 2k = M ,  finally one obtains 

V2u, - k2u, = 0, 

V2ul - k2u2 = 0, 

with the boundary conditions 

2ku1(+ 1, z) = +e*", O G Z G L ,  

2ku2( + 1, z )  = TeTk, O G Z G L .  
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In order to homogenize the conditions on the boundaries y = k 1, one should also make the 
change 

% ( Y ,  4 = 4 Y )  + V , ( Y ,  4, 
U,(Y, 4 = 4 - Y )  + V,(Y, 4, 

2ka(y) = tanh(k)cosh(ky) + coth(k)sinh(ky). 

(26) 

(27) 
where a(y) is a particular solution of equations (20) and (21) satisfying the condition (23): 

(28) 
With this we get 

V2v1 - k2vl = 0, 

V2v, - k2v2 = 0, 

with the boundary conditions 

u,(k 1, 2 )  = 0, Q < z < L ,  (32) 

31 = o ,  3 I = f ( y ) e - k y ,  lyl d 1, (33) 
a Z  r = O  a Z  r = L  

02(k 1, 2 )  = 0, O < Z < L ,  (34) 

(35) 
In this manner it is sufficient to find the general expression for functions u 1  and v 2  in the 

while condition (1 5) becomes 

u, (y ,  L)e-ky + 02(y,  L)eky = 2[cosh2(ky) - cosh2(k)]/k sinh(2k). 

semiduct (Figure 2). 

u 

y = l  

z = o  
Y = -1 

0 1  = 0 
v2 = 0 

-2 

t = L  v1 = 0 
v2 = 0 

Figure 2. Semiduct and boundary conditions 
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This problem has already been solved by Dragos’ and Grinberg6s7 by reducing it to the 
solution of an integral equation for the unknown function f(y). Although, as Grindberg says, 
his solution is rigorous from the mathematical point of view, its practical usefulness is limited 
since the integral equation cannot be solved easily with its kernel in the double-series form for 
both small and large Hartmann numbers. Other solutions must be considered. Hence the 
boundary element method solution has the advantage of having the integral equations for u1 
and u2 only on the boundary and solutions of these boundary integral equations with this 
method present no problem for small Hartmann numbers 1 < M < 10. For large Hartmann 
numbers the resulting system of equations arises with an ill-conditioned coefficient matrix 
because of the conditions on the boundary z = L (containing terms e-ky and eky). 

3. BOUNDARY ELEMENT FORMULATION 

The fundamental motivation behind the boundary element method’”’ is the reduction of the 
dimensionality of the problem. Thus we simplify the problem from one involving area integration 
(e.g. finite element method) to one involving line integration. In general the number of equations 
derived from such a formulation will be fewer than in the case of an interior method. In contrast 
with the sparse matrices encountered in other methods, the boundary-element-generated ma- 
trices are full. The first step in this formulation involves the generation of an integral equation 
over the boundary. Thus we need integral representations for u,(y, z) and u,(y, z )  over the 
boundary do. As we notice from equations (29), (30) and (31)-(34), u1 and u2 satisfy the same 
differential equation and boundary conditions except at z = L (having the same unknown 
functionf(y) but a sign difference in exponential functions). Thus u1 and u2 will have the same 
integral representations over aR with the extra conditions (31), (33) and (35) at z = L. We use 
a weighted residual approach because of its inherent simplicity for obtaining boundary integral 
equations for u I  and u 2 .  Introducing a weighting function Y which has continuous first 
derivatives and which satisfies the governing equation (equation (29) for uJ, we can write the 
weighted residual statement as 

j, (V’u, - k’ul)Y dZZ = 0. 

Employing Green’s theorem in two steps to yield 

we simply have an integral over the boundary 80, i.e. 

weightin 
since the weighting function Y satisfies the differential equation (29). 

We can follow the procedure in References 17 and 18 and select as ou function 
Y = K,(kr) (a modified Bessel function of the second kind and of order zero), the singular 
solution to the Helmholtz equation. The distance r is measured from an arbitrary point P to a 
point Q on the boundary. Substituting for Y ,  equation (38) becomes 
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The integrals in (39) are readily evaluated except in the vicinity of the singular point P .  This 
point is excluded from the region by a small circle of radius ro. We now write the required 
integrations as 

where 0 increases counterclockwise when the integral along aQ is taken in a clockwise direction. 
We now examine (40) in the limit as ro -+ 0 and find that the second term reduces to 

since Ko(kro) behaves like -log(kr,) for small arguments and limro+OrO log(kr,) = 0, implying 

2 n  au, lo an Ko(kro)ro dO = 0. 

The boundary integral equation is now 

This equation provides a relationship between any point in the interior of 52 and information 
known only at the boundary. When we require a relationship at the boundary, P is located 
along the boundary dR and equation (39) is written as (for a smooth boundary) 

where D is the semicircle around the point P with a radius ro which is collinear with the normal. 
Taking the limit as ro -+ 0, we have 

Similarly, for differential equation (30) we can obtain integral equations over JR as 

when the point P is in R and 

when P is located along the boundary an. 
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We rewrite equations (45) and (47) in the form 

ul(P) =! [Ir, (” Ko(kr)  - u1 ___ aKo(kr)) dS + jr, (2 Ko(kr)  - u1 w) a n  dS], (48) 

u2(P) = - 1 [I (2 Ko(kr) - u2 ---) JKOW dS + Jrz (2 Ko(kr) - u2 ___ dS], (49) 

n dn a n  

dn a n  n rl 

where ai2 = rl u T2. 
Now in equations (48) and (49) we notice that on the r2-part  of the boundary aR both u1 

and u2 are known and their normal derivatives are unknown. However, on r,, at z = 0, do,/an 
and a ~ , / a n  are known while u1 and u2 are unknown; on the other hand, at z = L both pairs 
ul, u2 and dullan, du2/dn are unknown since f(y) is an unknown function. Therefore we can 
solve the integral equations (48) and (49) with the help of two extra conditions, namely 

ol(y, L)e-ky + u2(y, L)eky = 2[cosh2(ky) - cosh2(k)]/k sinh(2k), (50) 

(51) 31 e-ky - 2 I j i L  eky = 0, 

where equation (51) is obtained from the elimination off(y) at z = L from equations (31) and (33). 

a n  z = L  

4. DEVELOPMENT OF A SET OF SIMULTANEOUS EQUATIONS 

The boundary aR is discretized into N elements (say N, elements on rl and N 2  elements on 
r,) and the values of u l  and u2 and their normal derivatives are assumed to be constant on 
each element and equal to the value at the midpoint of the element, i.e. 

Here the ~ ( C ) ’ S  are suitable interpolation functions and for constant elements 

1, < j  - d 5 < ( j  + AC.12 I ’  

0, elsewhere, 

where 5 is the dimensionless co-ordinate defined over an element and Ati  is the length of the 
jth element (Figure 3). Thus equations (48) and (49) become in discretized form 
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j-tli node 

I - - 1 

I=-1 ( = l  

Figure 3. Constant element 

Now consider the set of algebraic equations arising out of (57) and (58). Let the integrals for 
the undetermined parameters be defined as 

ri being the distance from node i to node j .  
Equations (48) and (49) can now be written as 

or 

5 u l , j H i j  + 5 (") G . .  = 0 (i = 1 , 2  ,..., N ) ,  
j =  1 j = l  an lJ 

N N 1 v 2 . j H i j  + 1 ( S ) G i j = O  ( i =  1,2, ..., N )  
j =  1 j = l  an 

where the elements of the matrices [ H I  and [GI are as defined in (59)-(61). Recall, however, 
that N ,  values of u I  and v 2  and N1/2 values of &, /an  and do2/dn (at the z = 0 boundary) are 
known from the boundary conditions. Thus this information can be transferred to the right-hand 
side of the system (48), (49) and the remaining equations are reordered. Still in this system we 
have more unknowns than equations, since at the z = L boundary both pairs v l ,  v2 and dullan,  
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au,/dn are unknown. Therefore at this boundary the conditions (35) and (51) are discretized and 
added to the system (64), (65), making it a square system of algebraic equations 

C'4Ib) = { F f ,  (66) 

where the vector { u )  contains the values of u ' , ~ ,  u , , ~ ,  (dul lan) ,  and (du,/dn)i and the vector {Ff 
is known from the boundary information and relation (35). One can now solve for { u }  using 
direct solution methods. Now that u ~ , ~ ,  u ~ , ~ ,  (du,/dn),  and (du,/dn)i are known at each point 
along the boundary, one can compute u1 and u2 anywhere in the interior. This is achieved by 
discretizing the general expressions (43) and (46): 

N N 

2 7 ~ u ~ , ~  = 1 u , , j H i j  + (") Gij, 
j =  1 j= l  dn 

N N 

2nv2.i = c u 2 , j H i j  + (""i> Gi j ;  
j =  1 j = l  an 

ri is now measured from the interior point P. 
The integrals in the coefficients H i j  and Gij of the matrices [HI and [GI respectively will be 

evaluated numerically. The integrals in Hii and Gii contain the singularities; therefore when the 
integral contains the point P,  a different algorithm is required than when the integral does not 
contain P. 

When the point P lies outside the interval, we have'' 

G.. t i  = lr, Ko(kri) ds x A<j[Ko(k'ilj- + 4~o(kri1j) + Ko(kri~j+ 1/2)1/62 (69) 

where the term r i J j  refers to the distance between the point P i  and the location s j  on the interval 
Tj (Figure 4). When the segment Ti contains P i ,  equation (69) is inappropriate and we use the 
formula2' 

6 
G . .  = K,(kri) ds x 2 c (dl/321+' - log / 3 ~ ~ / 3 ~ " ' ) / k ,  (70) 

" s,. I = O  

where /3 = (kA5J/4 and the values of d, and cl are given in Reference 20 (p. 64). 

Figure 4. Integration when the point is outside the interval 
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Because of the slow variation in aK,(kr,)/an with the position of P, we use the following simple 
relationship when P lies outside the integration interval: 

where K , ( x )  is a modified Bessel function of the second kind and of order one and 

with (zi, yi) = Pi and ( z j ,  y j )  = P j .  
When P lies on the integration interval, the integral 

is zero since the direction cosine is zero, so 

Thus when the system (66) with the entries (69)-(71) and (73) in the matrices [GI and [ H I  is 
solved for the unknown vector {u} which contains the values of ulr u 2 ,  &,/an and du2/an on 
the boundary nodes, one can easily compute u1 and u2 anywhere inside the region through 
equations (67) and (68). To find the velocity V(y,  z) and the induced magnetic field B(y, z)  at these 
interior points, we go back through the relationships (26), (27), (19), (16) and (8). For solving the 
system of linear algebraic equations (66), Gauss elimination with complete pivoting (the L2ARG 
matrix solver from the IMSL library) was used. 

5. NUMERICAL RESULTS AND DISCUSSION 

We have taken a square duct in our calculations (i.e. L = 1). It was divided into a mesh by 
taking mesh sizes of 0.2 in each direction for inside calculations (-0.9 d y d 0.9, 0.1 < z d 0.9). 
Throughout the computations double precision was used and the Bessel functions K O  and K ,  
were computed using subroutines from the IMSL library in double precision. 

The calculations have been done for small values of the Hartmann number, 1 < M d 10. 
Figures 5-7 show the behaviour of the velocity for several values of M at z = 0.1, z = 0.9 and 
y = 0.1 respectively. As the Harmann number is increased, the velocity profile shows a flattening 
tendency along both the y- and the z-axis. Similar behaviour can be seen in the induced magnetic 
field profiles of Figures 8 and 9 at z = 0.1 and z = 0.9 respectively. Sharp changes in both the 
velocity and the induced magnetic field are seen near the boundaries z = f 1 and y = T 1, 
implying boundary layers close to these boundaries as M increases. Figures 10 and 1 1  show the 
velocity and induced magnetic field contours respectively for M = 1 in the semiduct 0 d z < 1, 
- 1 d y d 1 using symmetry with respect to the z-axis. These curves have been drawn using the 
MATLAB package and the non-smoothness of the curves is due to the linear interpolation used 
in that package. 
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Figure 11. Induced magnetic field for M = 1 
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